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In [ll, a method is described for the asymptotic integr8tion of the 
differential eguations of the theory of elasticity rhieh enables us to 
derive to any required degree of accuracy an approximate theory for the 
bending of plates. Analogous concepts have been employed (without 
emphasizing the asymptotic aspect of the approach) in developing various 

approximatz theories of plates in bending and tension, as well as 
approxixtate theories of shells C2-61. The fundanental idea on which such 
a method is based, the separate and independent consideration of the 
elastic edge effects, was evolved a little earlier by Friedrichs E’?-81, 
but was applied only to derive the boundary conditions on the free edge 
of a shell. 

Xn the present study the method cl3 is employed to derive a general 
theory of shells. It wfll be found that there is a close relationship 
between the asymptotic method of deriving an approximate theory of shells 
and the method of asymptotic integration of the differential equations 
of the theory of shells described in [91. 

1. We refer space to an arbitrary curvilinear system of coordinates 
VI* X2# x3 and denote the radius-vector of an arbitrary point by !I= 
it(x”, x2, x3). ‘Ihen the principal vector Ri and the metric tensor gij 
are defined by the fomlas 

Ri = c3R I dxt, 6% = Rt*Rj 

Here and in what follows the Latin indices assume the values 
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904 A.L. Gol’denveizer 

1, 2 and 3. 

Let U be the displacement vector, y.. the strain tensor and oij the 

stress tensor. Then, for an isotropic e ‘i astic body 

where E is Young’s modulus and u is Poisson’s. ratio (the tensor rela- 
tions used here can be found, for example, in [lOI ). 

In the absence of body forces the equations of equilibrium are 

aT’/&r’ = 0, Tf = I/&ii Rj (g = lgij I) (1.2) 

It is convenient in the theory of shells to make use of curvilinear 
coordinates in which 

R = r (x1, 9) + z+n 

where r is the radius-vector of the middle surface and n is a unit 
vector normal to the middle surface. 

‘lhe tensors of the first and second quadratic forms of the middle 

surface will be denoted by a 
CQ, 

and b 4, respectively, and we shall adopt 

the convention that Greek indices here and in what follows assume the 

values 1 and 2. The metric tensor gij can then be expressed in terms of 

a+ and b c+ as follows: 

g QB = a,p - 2x%xp + Wj2baAbph, gas = 07 &, = 1 (1.3) 

In addition, there exist the formulas 

-.._ 
25 = 1 - 2b&- (2)” K, a = IaazpI, K = b,‘b22 - b ‘b 2 a 2 1 (1.4) 

in which K is the Gaussian curvature 

It is convenient to introduce the 

-- 
vg/a api = (a&p - x3bd 

of the middle surface. 

non-symmetric stress tensor -r’I 

rib I l/g/ a ($3 = +s (1.5) 

The vector T’, which appears in the equilibrium equation, can then 

be written as follows: 

Ti = l/a (@rh + r&n) (1.6) 
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After some manipulation the conditions of symnetry of the tensor oij 

can be reduced to the equalities 

where chu is a skew-symmetric discriminant tensor with components 

C - 0, ea - C1.a = - Cel = v/a 
Substituting (1.6) in the equation of equilibrium, we obtain 

a?? 
V=z=a - b,@zQs + ax8 = 0, V=r=s + b,g+ + g = 0 (1.8) 

Here Vo is the symbol of covariant differentiation in the metric on 

the middle surface. This operation is defined by the following formulas 

(see, for example, [lil): 

(the expression for 0o-r Or3 has to be written out in the second of these 

formulas). We assume that the displacement vector can be written as 

u = usrs - wn 

Then, making use of (l.l), we obtain 

219,s = Vpu= +V=up +2b=pW - 9 Bp" (V=UA +bh=W) + b=h(VBnk + bksW)I 

2r=, = 
th.4 

- V=W + bahuX + 2 - xabaA 6 , 
8W 

r33 = - &ix 

(1.11) 

Taking into account (1.5), we can re-write the elastic relations 

(1.1) as follows: 

- EI/z's = r33 - UZ=P (a== - x3bmo) (1.12) 

E 7 r L I/( 

au 
a - V=W + b,&+ ‘2 - x3baA a3 

) 
= (1 + 0) &,?A3 

E 
-ii- v- .$+a + vaup + 2bapW - x3 lbp’ (VA + LW) + 

+ b,’ (vpux + b&VII = 

= (1 + a) ga, (o.,,~ - xsbpp) + - cigaa [(ah, - x3bA,,) rip + zss] 
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If we denote the thickness of the shell by Zh, then the external and 
internal surfaces of the shell will be given by x3 = f h. lke boundary 

conditions, which we shall assume to be of the form 

+a = *fx, Tsa =-j-+X” for,$‘=fh 

must be satisfied on these surfaces. 

(1.13) 

Here and in the sequel we assume that h is constant. 

2. The equilibrium equations (1.8), the conditions of symnetry (1.7) 

and the elastic relations (1.12) constitute a complete system of differ- 
ential equations for the determination of the displacements and stresses 

In order to integrate this system we adopt the method employed in El] 

for the formulation of the principal iteration process. We change the 
independent variables according to the formulas 

xa,= RE”, i = hg (2.1) 

(here R is the characteristic radius of curvature of the middle surface) 

and we assume that the stresses and dis lacements do not vary too 
rapidly with respect to the variables c P , c*, 5, i.e. we assume that the 
required state of stress varies rapidly only in the direction of the 

variable x3. 

After the change of variables (2.1) the foregoing equations assme 
the form 

h’V,‘zcta. - h*Rb,%S + $f = 0, h*V~‘r=a + h+Rb,@@ + ‘$ = 0 

- h*V,‘W + h’Rb,& + ‘2 - h*cRb,” ‘2 ) = h* (1 + a) goX+ 

E 
‘2R v- z {vgluIL $- volua -t 2Jtb&V - @P lRbpa (Va‘w. -k RbxcN) + 

+Hbah‘(Vg’u~ i- Hb&IJ)l} = 

z (I + u) gaA (u,,~ - h+wb,p) .CQ - og,, I(aA, - Sh*Rbd +lr + +‘I 

where h* = h/I3 and Vo’ = RVo is the symbol of covariant differentiation 

with respect to the variables p. 

Note. The change of variables xa = Rta in (2.1) is equivalent to 
changing the symbol Va to va’R-‘. For example, from the first of 
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formulas (1.9) 

aA=P 
RV,AaP = - ath + Rr,;APP + Rr,fAa' 

c 

and, according to (1.10) 

lhe system (2.2) contains a small parameter h*. This parameter occurs 

explicitly in the equations and is contained in the quantities g and 

u, which, according to (1.3), (1.4) and (2.1), are defined by the 
fo’rmul as 

V- 
g = 1 - h+mbAk + h*ac2R2K, a gap = amp - 2h*Wbap 

3. We shall try to find a solution of equations (2.2) 

(2.3) 

+ hf2 ~2R”b,“bph 

in the form 

4 19 = h*-rEh*sqsj , ZQS = h*-‘Zh*sT (Sf3, 3s = h*-rxh*sqSj33 

U o = h*-r~h*sU,(s), J,f7 = h*-‘~h*“J,#” 
(3.1) 

Here r is a number (which is different for different quantities) 

which will be selected later; quantities qualified by the index s (in 

brackets, since it has no tensorial connotation) either are totally in- 
dependent of h or they contain a factor hP which is cormron to all these 

quantities; the sumnation is carried out over all values of s, starting 

from zero. 

We select r in the following manner: 

tas -+r=x+i, (z”“, P) -+r=St, (z&, W) - r = x + i (3.2) 

0 lerc: c; is for the present unspecified). We then substitute the ex- 

pansions of (3.1) into (2.2) and make the stipulation that in each 

equation of (2.2) taken separately, the coefficients of all powers of 

h* vanish, starting from the lowest. In this way, we obtain a sequence 
of systems of equations for determining the coefficients of the ex- 
pansions of (3.1). The first of these systems is of the form 

(3.3) 
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where 

Equations (3.3) may be easily integrated with respect to 5. JJaving 

performed this operation, setting K = 0, taking into account the condi- 
tions on the surfaces (1.13) and accepting that the quantities x and X" 

can be expressed in the form 

The equalities (3.6) constitute a complete system of differential 

equa$ons (wi;h independent variables c', c2) in the unknowns 7fot@, 

‘(Of ’ Tfot 
atJ 

,(01, zI (0) which are independent of 5. Here the 

stresses 7Coj are con%anC throughout the thickness of the shell, and, 

as will be shown in Section 11, the corresponding state of stress is 

closely related to the membrane state of stress in the classical theory 

of shells, 

4. For the homogeneous equations (2.2), when 

x;a, = X(*) = 0 (4-Q 

there exists one further form of the expansions of (3.1). It is obtained 

by selecting the following combination of values of r 

~z@+,=x+l, (2z8,TF)+r=x, (u,,W)-+r=xf2 (4.") 

We substitute (3.1) and (4.2) into equations (2.2) and impose the 

requirements that in the first five of these the coefficients of the 

lowest power of h* vanish, and in the sixth and seventh of equations 

(2.2) the coefficients of the lowest and next lowest powers of h* vanish. 

Taking into account (2.3), we obtain 
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awf*) -=o, ay=o, au (1) 
3 

-+- a v q/p) + R6 
a “~,f*) L= 0 

;$ (VJp’u,W + Va’up(0) + 2B6,gv0’) = 0 

.& W, u,(l) + Va’ap(‘) - Rbphc (Vct’ua(*) + Rbx,W’“‘) - 

- Rb,“c (V8’u~fo) + Rb&Vs)j = Paa+~~o)~l’ (4.3) 

Carrying out the integration with respect to 5 in these equations, 
and taking into account the homogeneous conditions on the surfaces 
(1.13), we find that 

w*, = w(O) (El, p), uaf*) = v,(O) (51, ~a), ua”) -_ 5 @,‘&oL- Rb,&#) 

V@‘&(O) + Va’v* (0) + 2Rb,p(*) = 0 

3 (V,’ (0; UN - Rb=~~~*)) + V,’ (V; ~(0~ - Rb~a~~~O)) - 

- Rb@‘lc (Vc,’ vk(*) + Rb;l,W’“‘) - Rbz$c (VB’v~‘o’ -+ ~b~~~‘))~ = P,Oapqo A~* 

q*p = $1 -f”) Va+t!T, qo)” = + (I - 62) R6,p q (4.4) 

In the fifth equality of (4.4) the tensor vfGjo@ is given as a 
homogeneous function of 5. It will be shown in Section 11 that formulas 
(4.4) define a state of stress closely related to the purely bending 
state of stress in the classical theory of shells. 

5. Let us consider now states of stress and strain which vary rapidly 
not only with respect to the variable x3, but also with respect to the 
variables xx and x2. For this purpose, instead of (2.11, we make the 
change of independent variables 

~&!_._5”, 
%t 

xs= h5 (5.1) 

and assume that with respect to (c’, t2, iJ the variation in the re- 
quired states of stress and strain is not too large. 

In formulas (5. I) k (o) is a large (compared to unity) non-dimensional 
number with increase in which the variation of the states of stress and 
strain increases. It is convenient, as in 191, to express kc,) in terms 
of h* by means of the formula 

* 4, 
&a, = (h 1 



910 A.L. Go1 ‘denveirer 

in which the number t,, as defined in [91, is the index of variation, 

in the direction of the x0: line. 

From now on we shall always assume that t, is a rational number equal 

to P,/T,, where P, and qa are positive whole numbers. 

!.laking the change of variables (5.1) in equalities (1.3), we obtain 

where 

RVhAa” 4 
= ka,Vh*A , RVhA, -= koi,Vh*Aa, . . 

V,*A"' = a*A”” + ’ G (r&4@ + $A”“) (5.2) 

Vh*A, = &,A, - - R l?$A,, . . . 
+A) 

and $ is the symbol of ordinary (not covariant) differentiation with 

respect to <I. 

We can now express the equilibrium equations (l.R), the conditions 

of symmetry (1.7) and the elastic relations (1.12) in the form 

h*k~,J7,*t(l@ - h+Rb,%?s + ‘$ = 0, 
dT33 

h*k&z*z=3 $- h*Rb,p=P + -dF = 0 

c&p (TX@ - h*R<b,“&) = 0, r3h = $4 - h*R cb,,“e3 

E 

v- 

TC?W -- _- 
R a 36 

= h* [ 233 - at@ (a,@ - h*RLbaB )] (5.3) 

E 
2R v- - VqpPp*ua + kta)vn*up + 2RbapW - 

- h*C [RbpA (kcajV,% + Rbx,W) + Rb,’ (ktpjVp*uX + RbApW)l, = 

= (1 + (3) &, (a,@ - h*RCb,& z+ - ug,, [(ai, - h*Rcb,,) TXP + rq3J 

6. Fe begin the investigation of the states of stress with a non-zero 
index of variation with the case when the variation is tjie same in the 

directions of both coordinate lines. Let 

k(,, = kc,, = k = (h*)- $ , t(l) = t(z) = t. = $ 

We introduce the notation 

.- - 
11 = (h*) 9’ (6.1) 
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and try to find a solution 
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to the system (5.3) in the form* 

*a =t rl'W'T,,,Y 239 = Yj'Bj-67,)" 

Jiere r is a number which is different for different unknowns. It must 

be selected in such a way that after substituting (6.2) into equations 

(5.3) and in each equation equating to zero the coefficients of all 

powers of n starting with the highest, we obtain a non-contradictory 

sequence of systems of equations for the determination of the coeffi- 

cients of the expansions of (6.2). Such values of F will be called non- 

contradictory values. 

In seeking non-contradictor values of r we must consider separately 

the cases when 

t<i/2, t-112, t>1/2 

(these cases also arose f91 in the process of as~ptotic integration of 

the differential equations of the theory of thin shells). 

We start with the case when t < l/2, i.e. we assume that 

ZP <Q (6.3) 

Then one of the variants of non-contradictory values of r will be 

H+r=x+q, +-+r=x+p, z=wr=x (6.4~ 
l&-+)‘=x-p, w-+r=x+q 

In the manner described above this reduces to a sequence of systems 

of equations in which the principal system is of the form 

(6.5) 

In deriving these equations we must substitute for h* and k in (5.3) 

according to formula (6.1) and then make use of the expansions of (6.2) 

and (6.4) and the inequality (6.3). In equalities (6.5), as in the sub- 

sequent relations of the first approximation, the symbols of covariant 

* The expansions of (6.2) are generalizations of the expansions of 

(3.1). The latter can be obtained from the former by putting p = 0, 

P = 1. 
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differentiation Qo* must be replaced by the symbols of simple differ- 

entiation ao on the basis of formulas (5.2). 

In this case the second variant of non-contradictory values of r wil 

be 

zQ@-+r=r=:+qq, Tao --“a r = x -j- p, +G --tr=X 

u, 3 r = 96 -+ 29 - 3p, w-er=x+“q-2p 
(6.6) 

This yields a system for which the principal equations are of the 

form 

7. In the case when 

zp = q 

the non-contradictor combination of 

ZLLa--+r=x+;ZP, Pa- 

Ua--,r=X+p, 

This c~ination corresponds to a 

in which the principal system is 

a 
“g daapW(o’ = Pnp&J(o)a~ 

(t -L 1/ 2) (i.1) 

values of r may be written as 

r*x$_p, 23s -+r=x (7.2) 

W+r=x-_t2p 

sequence of systems of equations 

The integration of these equations with respect to 5 can be carried 

out without difficulty. setting K = 0, assuming that in the conditions 

on the surface (1.13) the quantities x and A" can be expressed in the 

form 

we obtain 



Derivation of an approximate theory of shells 913 

In these formulas the dependence on 5 is$lways expressed explicitly. 

In particular we see that the stresses -r(,,) vary over the thickness 

of the shell according to an arbitrary linear law. 'Ihis means that 

formulas (7.5) define a compound state of stress in which the stresses 

due to forces and moments' are commensurable. 

8. In the case when the inequality 

2P > 4 (t>ll2) (8.1) 

holds, two non-contradictory combinations of values of r can be found. 

The first of these may be written as 

++r=x+q, zQ3 -+r=x+p, I+’ + r = x + zp - q 

uor-+r=x+q-p, W + r = x + 2q - 2p (8.2) 

and yields a sequence of systems of equations, the principal one of 

which is 

(3.3) 

aw(O) au,(o) 
-=o, T- (z ai a w(O) = 0 

9 $% u,(O) + &up(O)) = ParpApZ(0)AP 

The second non-contradictory combination of values of r is 

@+r=x+q, F3+r=x+p, zJ3+r=x+2p-q 

u,--+r=xfq-p, W+x<r<x+2q-2p (8.4) 

'Ihis results in a sequence of systems of equations in which the 

principal system is 
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%ot* a,a,,p + ---g-- = 0, %nr33 4xz(o)‘23 + -q- = 4 CaPqo) , a.7 = 0 z(p = Z@p 

aw(O) o &p (8.5) 

--x-= ’ 
- = 0, & (dpu,(O) + d&#-J)) = Paphpq,)~P 

ix 

‘lhe range of applicability of equations (8.3) and (8.5) is limited, 

besides (8.1), by the inequality 

PC4 (t < 1) (8.6) 

If p = q( t = l), then the non-contradictory combination (8.3) of 

values of r is valid, but corresponds to a sequence of systems of equa- 

tions the principal system of which is 

‘these equations differ from the general equations of the theory of 

elasticity only in that in the first place (8.7) omits terms which de- 

pend on the curvature tensor, and secondly, the symbols of covariant 
differentiation in (8.7) are replaced by symbols of simple differentia- 

tion. lhis means that the inequality (8.6) establishes the limit of the 

range of applicability of the theory of thin shells within the usual 
context of this theory. The possibility remains only of making simpli- 
fications associated with ignoring the effect of the curvature of the 

middle surface and with replacing covariant differentials by simple 

differentials. 

9. We shall now consider states of stress with different variations 

in the directions of the x1- and n2-lines, and show that in the case 

when max (tcI,, t( 2)) = 1 there exist states of stress which are 

essentially different from those considered so far. We shall confine our 

attention to the case when the middle surface of the shell is referred 

to orthogonal coordinates and when the smallest index of variation is 

zero. We can then take 

kt,, = /2*-r = 9, 4,) = r1’ 

(in order to be precise we assume that the greater variation occurs 
along the xl-line). In this case, for a solution of the type (6-Z), 

there exist two non-contradictory combinations of values of r. ‘Ihe 
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first of these is 

(Tll, 222, $3, 213, 231) - r = q - 1, (@, 221, P, F) - r = q 

(Ul, W) ‘* r = q - 2, u2*r=q- 1 (9.1) 

The principal equations of the corresponding sequence of systems of 
equations are 

(9.2) 

a,t(,)ll + a2qo)21 - Rb2%(0)23 + y = 0, QO)‘2 + b!?fL!t = 0 

4q0t3 + a2%)23 + R @12%o'2 + ~2,Q?921) + -g3 = 0 
%) 

Z(O) la = Z@)2', Z(O) 
31 - 

- T(0)13 - 5Rb21q0)23, T(O) 
32 = Ttob23 

E cYW(~’ 

-3 ag - = Z(OjJ3 - u [qlqo)” + a,,Qp - SRb,p,Z(,)‘2 - ~b21Z(o)z11 

6 

23 

- (j 
I 
w(O) + Rb 2u 

12 
(0) + aw(O) -- 

i% 
cRb$$)] = 

= (1 + 0) a,, (Q)‘~ - 2Rb125z2’) 

G a,,(O) = (1 + a) U,,T(,)23 
2H a< 

$ [a,u,(o) - @b12&u2(“)J = a,,a,,~+,,‘~ - 2CRa,lbzlqoju - 

- (JQl~22qO) 
22 

- %l?O, 
33 

z&a,u2(0) = (1 + a) u,,u,,q0~12 

; cI,u,(O) = u*2u22T~o~22 
- ~~22%lqo) 

11 
- aa22?0) 33 - (3 + 4 YZbl,+,t(o,21 

The second non-contradictory combination of values of F may be written 
as 

(t”, 222, 233, 93, r31) - r -t_ q, (92, 221, T23 
. 

9 232) -+ r = q - 1 

(Ul? W) --tr=q---l, u2+r=q-2 (9.3) 

‘Ihe principal equations of the corresponding sequence of systems of 
equations in this case is 

(9.4) 

hqo, 11 + ag zzz 0, ~,qo,‘2 ar(“,32 
+ d2~l,j22 - Rb12rcoj’3 + - = 

ac 
0 

%O,33 
f%~(o)'3 + ag = 0 

Cl2~(0) l2 + c21q0)~~ - CR k1&2'~~O~22 + c21b12z~,~1’l = 0 
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t(o) 31 - - q0)13, f(O) 
32 - 

- TjO)22 - 5Rb12q0)12 

E I~W(O’ 
-F ag 

- = qo)= - (J b,,qo)ll + ~,,qo)221 

E ’ 
23 t 

- qp’ + !y) = 
(1 + 4 %qo)13 

- a2FY’o’ + Rb,‘u,(O) + f!_$! - CRb,’ ‘3) = 

=z (1 + 0) (- W?b12rto,1S + a22qo)28) 

;~l~lco, = a11 (~llqo)" - ~~22qo)22 - fJqo)33) 

,& (cY2ul(o) + dlu2(o) + 2b,2W’o’ - ~Rbzl+z,@‘)) = - (1 - a) ~Rb,,a,,t~,,” + 

+ (1 + 4 q,~22q0~~~ - 25 Rb,za22qo,a2 + 2~5Rb,,~~o?2 

0 = u22u22t(o)22 - uu,,u,,r(,)” - uu2*qo)22 

In the system (9.2) the second, fourth, sixth, ninth and eleventh 
equalities corn rise an independent sub-system of equations in the five 
unknowns Tto) A ’ T(o) 21, T/, T(e)32 and u2(‘). In effect they are 

identical to the equations of the classical problem of the torsion of a 
rod about the c2-axis. In the system (9.4) the first, third, fifth, 

seventh, eighth, tenth and twelfth equations comprise a sub-system of 
equations in the seven unknowns 

In effect they coincide with the equations of the problem of plane 

deformation (in the plane of <‘, 51. 

‘lhus the states of stress corresponding to the non-contradictory 

combinations (9.1) and (9.3) h ave the same meaning as those obtained by 
the auxiliary iteration processes [II in the formulation of the theory 

of bending of plates. The principal difference between these states of 

stress and those derived in Sections 3 to 8 is that the derivation of 

the former reduces to the integration of the differential equations with 

respect to the variables (<‘, 51, and the derivation of the latter re- 

duces to the integration of the differential equations with respect to 
the variables (c’, c2). 

10. Consider the tensor of tangential forces fl, the tensor of 
moments Mc@ and the vector of shear forces Na 
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-h -h 

We replace z3 in (10.1) by 
4 

according to formula (2.1), substitute 

the expansions of (6.2) for T and va3 and then, taking into account 

formulas (6.1), we can write (10.1) in the form 

Tap = q’-qQ-8T,,,=P, 

where 

N” = q’-pzTp?v(,,’ 

(10.‘) 

In the first two formulas of (10.2) we must assign to r the value 

which it asszs for v”@ and in the third formula, the value which it 

assumes for T . Formulas (10.2) and (10.3) hold both for t > 0 and for 

t = 0; in the latter case we must take p = 0, q = 1 and k = 1. 

We introduce the quantities v, [‘I , wLs3 (upper indices in square 

brackets), which are defined by ihe formulas 

v=(E) = q-PQ+PVpl = /pP&pl, & = q-PQ&l = p&l 

‘Ihe number p which occurs in these formulas assumes different 

for different cases. 

It will be shown in Section 11 that if T,,,,aP, M(aJc@, Ntoja, 
r 7 

(10.4) 

values 

V,[Ol 

and wLoJ are identified, respectively, with the tensor of tangential 

forces, the tensor of moments, the vector of shear forces, the vector 

of tangential displacements and the normal displacement, then a simple 

physical interpretation can be ascribed to the principal equations of 

the various iteration processes derived above which is closely related 

to the results obtained [91 by means of asymptotic integration of the 

differential equations of the classical theory of thin elastic shells. 

fl. Consider equations (3.3), i.e. the principal system of equations 

of the iteration process described in Section 3. Integrating the first, 
second, third and seventh of these equations with respect to 5 over the 
interval (-1, +l), we obtain 
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VJ(o,ap + X(0? = 0, bapqlp + 2(O) = 0, Cd(O) 4 = 0 

2Eh f (Vpv,["l + vaz$ol + 2b~pwlol) = Y~~+T~~,+ (11.1) 

'lhe procedure for deriving these equalities is as follows. 'lhe inte- 

grals with respect to < are either replaced according to (10.3) or the 

integration is carried out, and in the substitution of the limits the 

conditions on the surfaces (1.13) are imposed. 'lhe quantities uo (0) and 
W'(O) are expressed in terms of vo(') and w(O) accordin 

(0) 

Lmulas (10.4) 

and m(O) are expressed in terms of uo Lo1 and UJ[O~ EZZ!g Ed 

with p = 1, k = 1. Finally, Vo' corresponding to the 

variables c a is replaced by RV, corresponding to the variables x0(. 

Similarly, the following equalities are derived from (4.3): 

2Eh3 1 

Vpv,[Ol + V,u&l'l + 2Rb,pwlOJ = 0 

9 3 [Vp (V,u:[Ol - ba"v*'Ol) -+ v,(v~w[ol -- ~&.J~[Ol) - (IIL) 

- bpA (V,Z$J] f bAow[OJ) - bah (Vp#‘J + bApw[“l)] = PapAJ14~o/=fi 

‘he first of these is obtained directly from the eighth equality of 

(4.3) and the second, from the ninth equality of (4.3), which must first 

be multiplied by 5 and then integrated over the interval (-1, +l). The 

transformation is carried out as before by making use of formulas (4.4), 

(10.2) and (10.4); in the latter we take p = 2, k = 1. 

lhe following equalities follow from equations (7.3) 

'lhese are derived as follows, The first, second, third and seventh 

of equalities (7.3) are integrated with respect to 5 over the interval 

(-1, +l), and in addition, the first and seventh of equalities (7.3) 

are multiplied by 5 and integrated with respect to 5 over the interval 

(-1, + 1). 'lhe equalities SO obtained are transformed in the manner de- 

scribed above. In using formulas (10.4) we take p = 1, bearing in mind 

that equalities (7.3) hold when kcl) = k(,, = k = (/I*)-~/* and that in 

(7.3), according to (5.1) 
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In order to compare relations (11.1) to (11.3) with the equations of 

the classical theory of shells, we write the latter as follows: 

'Ihe equations of e~ilibri~~ 

V,.Th" - bx”Nh + X” = 0, bapTap+ V,& f J: = 0, V,.liP - Iv" = 0 

C,pTQp - c,~b&fzfi - 0 (11.4, 

?he strain-displacement relations 

s,@ = Vixvp -i- b,pu) + cBA PM = VP (V,W - b,G,.) - c~,b&3 

8= - f c”PbG,vp (11.51 

'Ihe relations between strains, forces and moments 

8,p = &h(P apex+ + QarpQ@'), I&p = &$%@A$W -+ $%fi"$~P) 

P a&np = R al3hu - aaiai+ - %).cpw (11.6) 

These relations are taken from [121 (x in the equations of equi- 

librium has been replaced by -x in accordance with our present sign con- 

vention). 'Ihere the force and moment tensors are introduced by means of 

the equalities 

(the minus sign included in error [121 in the formula for h# has been 

omitted). If we take into account (1.5) we can easily see that these 

expressions coincide with equalities (10.1). 

'Ihe first three equations of (11.1) are identical with the equations 

of equilibrium of the membrane 

with R@ =N" = 0. 

theory, which can be obtained from (11.4) 

'Ihe formula for the tensor of tangential strain a 

reduced to the form 

QP in (11.5) can be 

s,~ = $- (V,v, + Vixvs 4 2b,fiw) 
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and the formula for P 
“f; 

hv in (11.6), to the form (3.4). Thus, in (11.6) 
the tensor PcLic,^u has t e same meaning as in the other formulas of this 

paper, and consequently the fourth equality of (11.1) is equivalent to 

the elastic relations of the membrane theory. 

Thus the iteration process derived in .Section 3 is equivalent in 

first approximation to the membrane theory. 

It follows from formulas (11.5) that 

2pap - babap - bp”saa = VP (V,ui - ba,CA) +V, (Vfiw - b$ziA) - 

- bpx (Vav, + baa@ - b2 (Vpvx + bud 

The left-hand side of this equality with E+ = 0 coincides with 

and the expression on the right-hand side is identical with the ex- 

“pap, 

pression in square brackets in the second equality of (11.2). 

It follows that the iteration process described in Section 4 defines 

a state of stress which in first approximation is equivalent to a purely 

bending state of stress. 

The first of equalities (11.2) is equivalent to the equality E +=O 

and constitutes equations of infinitely small bending deformations. To 

the accuracy of quantities of the order of h*, the second equality co- 

incides for such a state of stress with the second strain-force-moment 

relation of (11.6). 

The iteration process developed in Section 7 coincides in first 

approximation with states of stress which have large variations. Indeed, 

relations (11.3), which are derived from this process, can be obtained 

from the relations of the classical theory of shells by: 

a) discarding the tensor Na in the first of the equilibrium equations 

(11.4); 

b) discarding tangential displacements in the expression for the 

strain tensor p 
a@; 

c) accepting the most simple version of the strain-force-moment 

formulas; 

d) substituting simple differentiation for covariant differentiation. 

This, in fact, constitutes the familiar hypotheses of the theory of 

a state of stress with a large variation. 

It is likewise not difficult to give a physical interpretation of 

the principal equations of the iteration processes described in 
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Section 6 and 8. 

Equations (6.5) and (6.7) differ, respectively, from equations (3.3) 

and (4.3) only in that in the former the symbols of covariant differ- 
entiation Vat have been replaced by those for simple differentiation do, 

and on the left-hand side of the last equality of (6.7) only those terlns 

remain that contain second derivatives of the normal deflection. The 

same simplifications result if we use the method of asymptotic integra- 

tion to find the membrane and purely bending states of stress with non- 

zero variation and retain in the equations only those terms required 

for a first approximation. Ihus, equations (6.5) and (6.7) correspond to 

the equations of the first asymptotic approximation of the membrane and 

purely bending theories of states of stress with non-zero variation. 

Similarly, it can be shown that equations (8.3) and (8.5) correspond 

to the theory of states of stress with large (t > l/2) variation. Equa- 

tions (8.3) correspond (in the context of 191) to a state of bending 

stress similar to that in the bending of a plate. Equations (8.5) cor- 

respond to a state of tangential stress similar to a generalized state 

of plane stress. 

12. In Sections 3 to 6 iteration processes are formulated for deriv- 

ing states of stress which in the zeroth approximation are equivalent 

to: a membrane state of stress (Sections 3 and 6). a purely bending 

State of stress (Sections 4 and 6) and a state of stress with a large 

variation index (Sections 7 and 6). It is not difficult to formulate 

iteration processes also for the derivation of states of stress corre- 

sponding to simple and generalized edge effects. These can be obtained 

by the integration of equations (5.3) with the- aid of the expansions of 

(6.2) and with the proper choice for the values of r. 

l’be integrals corresponding to all the states of stress enumerated 

above can also be found directly from the equations of the classical 

theory of shells by the method of asymptotic integration E91. Taken 

together they contain sufficient arbitrary constants to satisfy all four 

boundary conditions of the classical theory of shells for a wide class 

of problems (this question has been discussed in c9,13-151). For this 

class of problems of the theory of shells the iteration processes de- 

scribed here play the same part when taken as a set as the basic itera- 

tion process in the theory of the bending of plates [II, in the sense 

that the initial approximation is equivalent to the classical theory. At 

the same time. in Section 9 iteration processes are formulated which are 

equivalent to two variants of the auxiliary iteration process [ll. One 

of them corresponds to the state of stress for edge torsion and the 
other corresponds to the state of stress for plane edge deformation. By 

analogy with the theory of plates it is to be expected that by combining 
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the iteration processes of Sections 3 to 8 with those of Section 9 we 
shall be able to satisfy the boundary conditions of the three- 
dimensional theory of elasticity to any degree of accuracy for the 
class of shell-problems considered here. III [I] this question is con- 
sidered for plates for cases corresponding to a free, a clamped and a 
simply-supported edge. 

13. For all the iteration processes in the present article only the 
Principal Systems of equations are given. The derivation of the equa- 
tions which define the nth terms of the expansions does not present any 
difficulty (they differ from those given only in their absolute terms), 
but to include them in full would have been too tedious a task. 

It is of ,interest to make an estimate of the remainders and to 
formulate the conditions for which the iteration processes described in 
this study are asymptotic. There are certain mathematical difficulties, 
but it is to be hoped that these will prove to be not too serious. 

The conditions which enaure the asymptotic convergence of the pro- 
cesses studied here define the field of applicability of the results 
obtained. Some of these conditions are obvious without any mathematical 
analysis. 

One such condition is that the equations which define the initial 
approximations must have finite solutions for given boundary conditions. 
This condition is not fulfilled for all cases of practical importance. 
For instance, the equations of the membrane theory (11.1) do not have 
finite solutions: 

a) for an infinitely long cylindrical shell, for a conical shell 

having an apex. or in general, for shells which Contain a CUSP; 

b) for a shell rhich is tangential to a plane along a closed curve 

(for example a torus). 

Such shells, and shells which differ very slightly from them (for 
example, a very long cylindrical shell), were described in [91 as shells 

with a singular middle surface. For them the three-dimensional equations 
of the theory of elasticity must be reduced to two-dimensional equations 
by other iteration processes. 

Equations (11.1) will also not have a solution when b 
04) 

= 0. This 

means that the question of shallow shells requires a special treatment. 
This question can evidently be solved by means of the iteration Process 
described in Section 7. 
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